

TABLE OF CONTENTS

+	Triangle	3
+	Square	7
+	Rhombus	11
+		15
+		19
		23
	Thinking	31
A STOR	-	

	Equilateral	Isosceles	Scalene	
Congruencey	All sides & angles are equal.	Two sides & angles are equal.	No sides/angles are equal.	
of Sides &	GI = HI = GH = 1.5 units	MN = MO = 1.5 units	ST ≠ TU ≠ SU	
Angles	$\measuredangle A = \measuredangle B = \measuredangle C = 60^{\circ}$	$\measuredangle N = \measuredangle O = 63.4^{\circ}$	\measuredangle S ≠ $\end{Bmatrix}$ T ≠ $\end{Bmatrix}$ C	
Midsegments	Each midsegment is parallel	Each midsegment is parallel to	Each midsegment is parallel to	
are Parallel to	to a side of the triangle:	a side of the triangle:	a side of the triangle:	
the Triangle's	HI // DE, GH // EF,	MN // KL, MO // JL,	ST // KL, TU // JL,	
Sides	GI // DF	NO // JK	SU // JK	
Midsegments are half the length of its parallel.	EXAMPLE: HI = $\frac{1}{2}$ DE 1.5 = $\frac{1}{2}$ (3)	Example: MN = ½ KL 1.7 = ½ (3.4)	Example: TU = ½ PR 1.8 = ½ (3.6)	

REFER TO THE PREVIOUS SLIDE FOR THE figures

All 4 sides of a square are equal. AB = BC = CD = AD = 2 units

Likewise, all 4 angles of a square are equal. $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$

A square has 2 pairs of opposite parallel sides. AB // CD ; AD // BC

FEATURES OF A SQUARE

Each side of a square is perpendicular to its adjacent side. AB \perp AD ; AB \perp BC ; BC \perp CD ; CD \perp AD

The midsegments are perpendicular to each other. JK \perp KL ; IJ \perp IL ; KL \perp IL ; JK \perp IJ

Angles formed by the midsegments are equal. $\angle KML = \angle IML = \angle JMK = \angle IMJ = 90^{\circ}$

All midsegments are equal in length. JK = KL = IL = IJ = 1.4 units

Hence, the midsegments of a square create another square. JK = KL = IL = IJ = 1.4 units $\measuredangle KML = \measuredangle IML = \measuredangle JMK = \measuredangle IMJ = 90^{\circ}$

The diagonals are equal in length. NR = RQ = RP = OR = 1.4 units

The angles formed by the diagonals are equal. $\angle NRQ = \angle PRQ = \angle ORP = \angle NRO = 90^{\circ}$

The diagonals bisect each other. NR = PR = 1.4 units ; OR = QR = 1.4 units

The diagonals are perpendicular to each other. OQ \perp NP

Hence, four congruent triangles are formed. $\triangle ORP = \triangle PRQ = \triangle NRQ = \triangle NRO$

All 4 sides of a rhombus are equal in length. AB = BC = CD = AD = 1.5 units

A rhombus has 2 pairs of opposite equal angles. $\measuredangle A = \measuredangle C = 110^\circ$; $\measuredangle B = \measuredangle D = 70^\circ$

A rhombus has 2 pairs of opposite parallel sides, which is why it is also a parallelogram. AB // CD ; AD // BC

FEATURES OF A RHOMBUS

The angles formed by the midsegments are equal. $\angle ILK = \angle JIL = \angle IJK = \angle JKL = 90^{\circ}$

Opposite midsegments are parallel. EG // IK // FH ; EF // JL // GH

Opposite midsegments are equal in length. JK = IL = 1.2 units ; KL = IJ = 0.9 units

Hence, the midsegments of a rhombus form a rectangle. \angle ILK = \angle JIL = \angle IJK = \angle JKL = 90° JK = IL = 1.2 units ; KL = IJ = 0.9 units

The angles formed by the diagonals are equal. $\angle NRP = \angle QRP = \angle QRO = \angle NRO = 90^{\circ}$

The diagonals bisect each other. NR = QR = 0.9 units ; PR = OR = 1.2 units

The diagonals are perpendicular to each other. NQ \perp OP

Hence, four congruent triangles are formed. \triangle QRO = \triangle QRP= \triangle NRP = \triangle NRO

DIAGONALS OF A RHOMBUS

Б

There are two pairs of equal sides. AB = CD = 3 ; BC = AD = 4 units

All angles in a rectangle are equal. $\measuredangle A = \measuredangle B = \measuredangle C = \measuredangle D = 90^{\circ}$

A rectangle has 2 pairs of opposite parallel sides. AB // CD ; AD // BC

FEATURES OF A RECTANGLE

Each side of a rectangle is perpendicular to its adjacent side. AB \perp AD ; AB \perp BC ; BC \perp CD ; CD \perp AD

16

The opposite angles formed by the midsegments are equal. KIKL = KIJK = 73.7°;
KJKL = KJIL = 106.3°

Opposite midsegments are parallel to each other. IJ // KL ; IL // JK

All midsegments are equal in length. IJ = JK = IL = KL = 2.5 units

MIDSEGMENTS OF A RECTANGLE

Midsegments of a rectangle form a rhombus. Sides are congruent and there are 2 pairs of parallel sides as mentioned above.

Opposite angles are equal. $\angle MQP = \angle NQO = 73.7$; $\angle OQP = \angle MQN = 106.3^{\circ}$

The diagonals bisect each other. MQ = OQ = 2.5 units ; NQ = PQ = 2.5 units

The diagonals are equal in length. NQ = MQ = OQ = PQ = 2.5 units

Two pairs of congruent triangles are formed. $\triangle MQN = \triangle OQP$; $\triangle NQO = \triangle PQM$

Adjacent angles are supplementary. $\angle MQP + \angle OQP = 180$; $\angle NQO + \angle MQN = 180^{\circ}$ 73.7° + 106.3° = 180°; 73.7° + 106.3° = 180°

PARALLELOGRAM

And its characteristics...

Opposite sides are equal in length. AB = CD = 1.5 units ; BD = AC = 2.1 units

Opposite angles are equal. $\measuredangle A = \measuredangle D = 76^{\circ}$; $\measuredangle B = \measuredangle C = 104^{\circ}$

There are 2 pairs of opposite parallel sides. AB // CD ; AC // BD

Adjacent angles are supplementary. $\measuredangle A + \measuredangle C$; $\measuredangle B + \measuredangle D$ $= 76^{\circ} + 104^{\circ}$; $= 104^{\circ} + 76^{\circ}$ $= 180^{\circ}$; $= 180^{\circ}$

The opposite angles formed by the midsegments are equal. $\angle IJK = \angle ILK = 71.6^{\circ}$; $\angle JKL = \angle JIL = 108.4^{\circ}$

Opposite midsegments are parallel to each other. IJ // KL ; IL // JK

Opposite midsegments are equal in length. IJ = KL = 1.4 units ; JK = IL = 1.1 units

MIDSEGMENTS OF A PARALLELOGRAM

: the midsegments of a parallelogram form another parallelogram. Opposite angles and sides are congruent.

Opposite angles are equal. $\angle MQN = \angle OQP = 71.6$; $\angle MQP = \angle NQO = 108.4^{\circ}$

The diagonals bisect each other. MQ = OQ = 1.4 units ; NQ = PQ = 1.1 units

Two pairs of congruent triangles are formed. $\triangle MQN = \triangle OQP$; $\triangle NQO = \triangle MQP$

There is only one pair of parallel sides. AB // CD

There are different types of trapezoids! The most popular ones are listed here----+ Right Trapezoid

- + has a right angle
- + Isosceles Trapezoid
 - + has congruent legs
 - + has two pairs of congruent angles

FEATURES OF A TRAPEZOID

The opposite angles formed by the midsegments are equal. $\angle IJK = \angle ILK = 86.8^{\circ}$; $\angle JKL = \angle JIL = 93.2^{\circ}$

Opposite midsegments are parallel. IJ // KL ; IL // JK

Opposite midsegments are congruent. IJ = KL = 1.8 units ; JK = IL = 2.5 units

MIDSEGMENTS OF

Hence, the midsegments of a parallelogram form another parallelogram. Opposite angles and sides are congruent.

Opposite angles are equal. $\angle MQN = \angle OQP = 93.2^{\circ}$; $\angle MQP = \angle NQO = 86.8^{\circ}$

The diagonals do NOT bisect each other. $MQ \neq OQ$; $PQ \neq NQ$

 Adjacent angles are supplementary.

 ∠MQP + ∠OQP
 ;
 ∠NQO + ∠MQN

 = 86.8° + 93.2°
 ;
 = 86.8° + 93.2°

 = 180°
 ;
 = 180°

*Isosceles trapezoid: diagonals are equal in length. Only one pair of congruent triangles is created.

Adjacent sides are equal in length. AB = AD = 1.8 units ; CB = CD = 2.5 units

There is one pair of congruent angles. $\measuredangle B = \measuredangle D = 86.8^{\circ}$

Fun fact... the kite is the only quadrilateral from those in this presentation that can also be concave if in the shape of a dart!

Features of a Kite

The midsegments are perpendicular to each other. JK \perp KL ; IJ \perp IL ; KL \perp IL ; JK \perp IJ

Angles formed by the midsegments are equal. $\angle KML = \angle IML = \angle JMK = \angle IMJ = 90^{\circ}$

Opposite midsegments are equal in length. JK = IL = 1.5 units ; KL = IJ = 1.5 units

MIDSEGMENTS OF A KITE Hence, the midsegments of a kite create a rectangle. JK = IL = 1.5 units ; KL = IJ = 1.5 units $\measuredangle KML = \measuredangle IML = \measuredangle JMK = \measuredangle IMJ = 90^{\circ}$

The diagonals are sometimes equal in length. NP = MO = 3 units

The angles formed by the diagonals are equal. $\angle NQO = \angle OQP = \angle MQN = \angle MQP = 90^{\circ}$

Only one diagonal is bisected by the other. MQ = OQ; $NQ \neq PQ$

The diagonals are perpendicular to each other. MO \perp NP

Two pairs of congruent triangles are formed. $\triangle OQP = \triangle MQP ; \triangle NQM = \triangle NQO$

AFTER HOURS IN THE STORE ...

I finally found a triangular kite! ----->

Original dimensions:68.5 cm49.5 cmRatio $\downarrow \div 11$ $\downarrow \div 11$ $\downarrow \div 11$ 1:11Ratioed dimensions:6.2 cm4.5 cm1:11

The plastic rod is the midsegment connecting sides MN and MO. It is parallel to Side NO. We know that the midsegment of a triangle is half in length of its parallel. Hence, segment TU is half of NO. $TU = \frac{1}{2} NO$ $TU = \frac{1}{2} (6.2)$ TU = 3.1

... the plastic rod is 3.1 cm in the diagram. In reality it would be (3.1 x 11) 34.1 cm.

LENGTH OF THE PLASTIC ROD OF THIS KITE

Original dimensions:	68.5cm	,	49.5 cm	
	÷ 11		÷ 11	
Ratioed dimensions:	6.2cm	,	4.5cm	

The pythagorean theorem can find the length of a missing side in a right triangle. The formula goes like this: $a^2 + b^2 = c^2$ where a and b are the base and height. In the dark shaded triangle, we are given the value of a and c. If we sub in... $a^{2} + b^{2} = c^{2}$ $(3.1)^2 + b^2 = (4.5)^2$ $9.61 + b^2 = 20.25$ $b^2 = 10.64$ b≈3.3

. The median of the plastic rod is around 3.3 cm.

