
 Chapter 7 Task

Table of Contents

+ Triangle 3
+ Square 7
+ Rhombus 11
+ Rectangle 15
+ Parallelogram 19
+ Trapezoid 23
+ Kite 28
+ Thinking 31

M Midsegments of Triangles

Equilateral, Isosceles, and Scalene ------>

	Equilateral	Isosceles	Scalene
Congruencey of Sides \& Angles	All sides \& angles are equal. $\begin{gathered} \mathrm{GI}=\mathrm{HI}=\mathrm{GH}=1.5 \text { units } \\ \measuredangle \mathrm{A}=\measuredangle B=\measuredangle C=60^{\circ} \end{gathered}$	Two sides \& angles are equal. $\begin{gathered} M N=M O=1.5 \text { units } \\ \measuredangle N=\measuredangle O=63.4^{\circ} \end{gathered}$	$\begin{gathered} \text { No SIDES/ANGLES ARE EQUAL. } \\ \text { ST } \neq T \mathrm{TU} \text { SU } \\ \measuredangle S \neq \measuredangle T \neq \Varangle C \end{gathered}$
Midsegments are Parallel to the Triangle's Sides	Each midsegment is parallel TO A SIDE OF THE TRIANGLE: HI // DE, GH // EF, GI // DF	Each midsegment is parallel to a side of the triangle: MN // KL, MO // JL, NO // JK	EACH MIDSEGMENT IS PARALLEL TO A SIDE OF THE TRIANGLE: ST // KL, TU // JL, SU // JK
Midsegments are half the length of its parallel.	Example: $\begin{aligned} & H I=1 / 2 \mathrm{DE} \\ & 1.5=1 / 2(3) \end{aligned}$	Example: $\begin{gathered} M N=1 / 2 K L \\ 1.7=1 / 2(3.4) \end{gathered}$	Example: $\begin{gathered} \mathrm{TU}=1 / 2 \mathrm{PR} \\ 1.8=1 / 2(3.6) \end{gathered}$

Features of
a Square

All 4 sides of a square are equal. $A B=B C=C D=A D=2$ units

Likewise, all 4 angles of a square are equal. $\measuredangle A=\measuredangle B=\measuredangle C=\measuredangle D=90^{\circ}$

A square has 2 pairs of opposite parallel sides.
$A B / / C D$; $A D / / B C$

Each side of a square is perpendicular to its adjacent side.
$A B \perp A D ; A B \perp B C ; B C \perp C D ; C D \perp A D$

Midsegments
of a Square
The midsegments are perpendicular to each other.
JK \perp KL ; IJ $\perp \mathrm{IL}$; KL $\perp \mathrm{IL}$; JK $\perp \mathrm{IJ}$
Angles formed by the midsegments are equal.
$\measuredangle K M L=\measuredangle I M L=\measuredangle J M K=\measuredangle I M J=90^{\circ}$
All midsegments are equal in length.
$\mathrm{JK}=\mathrm{KL}=\mathrm{IL}=\mathrm{IJ}=1.4$ units
Hence, the midsegments of a square create another square.

$$
\mathrm{JK}=\mathrm{KL}=\mathrm{IL}=\mathrm{IJ}=1.4 \text { units }
$$

$$
\triangle K M L=\angle I M L=\angle J M K=\angle I M J=90^{\circ}
$$

Diagonals of
a Square

The diagonals are equal in length.
$N R=R Q=R P=O R=1.4$ units

The angles formed by the diagonals are equal. $\measuredangle N R Q=\measuredangle P R Q=\angle O R P=\measuredangle N R O=90^{\circ}$

The diagonals bisect each other. $N R=P R=1.4$ units ; $O R=Q R=1.4$ units

The diagonals are perpendicular to each other. $O Q \perp N P$

Hence, four congruent triangles are formed. $\triangle O R P=\triangle P R Q=\triangle N R Q=\triangle N R O$

Rhombus

And its characteristics...

All 4 sides of a rhombus are equal in length. $A B=B C=C D=A D=1.5$ units

A rhombus has 2 pairs of opposite equal angles.
$\measuredangle A=\measuredangle C=110^{\circ} ; ~ \measuredangle B=\measuredangle D=70^{\circ}$
A rhombus has 2 pairs of opposite parallel sides, which is why it is also a parallelogram.

Features of

a Rhombus

The angles formed by the midsegments are equal.
$\measuredangle \mathrm{ILK}=\measuredangle \mathrm{JIL}=\measuredangle \mathrm{IJK}=\measuredangle \mathrm{JKL}=90^{\circ}$
Opposite midsegments are parallel. EG // IK // FH ; EF // JL // GH

Opposite midsegments are equal in length. $\mathrm{JK}=\mathrm{IL}=1.2$ units ; $\mathrm{KL}=\mathrm{IJ}=0.9$ units

Midsegments
of a Rhombus
Hence, the midsegments of a rhombus form a rectangle.
\measuredangle ILK $=\measuredangle \mathrm{JIL}=\measuredangle \mathrm{IJK}=\measuredangle \mathrm{JKL}=90^{\circ}$
$J K=I L=1.2$ units $; K L=I J=0.9$ units

Diagonals of
a Rhombus
The angles formed by the diagonals are equal. $\measuredangle N R P=\angle Q R P=\triangle Q R O=\triangle N R O=90^{\circ}$

The diagonals bisect each other. $N R=Q R=0.9$ units ; $P R=O R=1.2$ units

The diagonals are perpendicular to each other. $N Q \perp O P$

Hence, four congruent triangles are formed. $\triangle Q R O=\triangle Q R P=\triangle N R P=\triangle N R O$

Features of
a Rectangle

There are two pairs of equal sides. $A B=C D=3$; $B C=A D=4$ units

All angles in a rectangle are equal.

$$
\angle A=\angle B=\angle C=\angle D=90^{\circ}
$$

A rectangle has 2 pairs of opposite parallel sides.

$$
A B / / C D ; A D / / B C
$$

Each side of a rectangle is perpendicular to its adjacent side.

$$
A B \perp A D ; A B \perp B C ; B C \perp C D ; C D \perp A D
$$

The opposite angles formed by the midsegments are equal. $\measuredangle \mathrm{IKL}=\measuredangle \mathrm{IJK}=73.7^{\circ} ; \Varangle \mathrm{JKL}=\measuredangle \mathrm{JIL}=106.3^{\circ}$

Opposite midsegments are parallel to each other.
IJ // KL ; IL // JK
All midsegments are equal in length. $\mathrm{IJ}=\mathrm{JK}=\mathrm{IL}=\mathrm{KL}=2.5$ units
Midsegments of
a Rectangle
Midsegments of a rectangle form a rhombus. Sides are congruent and there are 2 pairs of parallel sides as mentioned above.

Opposite angles are equal. $\measuredangle M Q P=\measuredangle N Q O=73.7 ; \measuredangle O Q P=\measuredangle M Q N=106.3^{\circ}$

The diagonals bisect each other. $\mathrm{MQ}=\mathrm{OQ}=2.5$ units ; $\mathrm{NQ}=\mathrm{PQ}=2.5$ units

The diagonals are equal in length. $N Q=M Q=O Q=P Q=2.5$ units

Two pairs of congruent triangles are formed. $\triangle M Q N=\triangle O Q P ; \triangle N Q O=\triangle P Q M$
Diagonals of
a Rectangle
Adjacent angles are supplementary.
$\measuredangle M Q P+\measuredangle O Q P=180 ; ~ \measuredangle N Q O+\measuredangle M Q N=180^{\circ}$
$73.7^{\circ}+106.3^{\circ}=180^{\circ} ; 73.7^{\circ}+106.3^{\circ}=180^{\circ}$

Opposite sides are equal in length.

$$
A B=C D=1.5 \text { units } ; B D=A C=2.1 \text { units }
$$

Opposite angles are equal.

$$
\measuredangle A=\measuredangle D=76^{\circ} ; \measuredangle B=\measuredangle C=104^{\circ}
$$

There are 2 pairs of opposite parallel sides. $A B / / C D$; $A C / / B D$

Adjacent angles are supplementary.

$$
\begin{array}{lll}
\measuredangle A+\measuredangle C & ; & \angle B+\measuredangle D \\
=76^{\circ}+104^{\circ} & ; & =104^{\circ}+76^{\circ} \\
=180^{\circ} & ; & =180^{\circ}
\end{array}
$$

The opposite angles formed by the midsegments are equal.

$$
\triangle I J K=\measuredangle I L K=71.6^{\circ} \quad ; \quad \measuredangle \mathrm{JKL}=\measuredangle \mathrm{JIL}=108.4^{\circ}
$$

Opposite midsegments are parallel to each other.
IJ // KL ; IL // JK
Opposite midsegments are equal in length. $\mathrm{IJ}=\mathrm{KL}=1.4$ units ; $\mathrm{JK}=\mathrm{IL}=1.1$ units
Midsegments of a Parallelogram
\therefore the midsegments of a parallelogram form another parallelogram.
Opposite angles and sides are congruent.

Opposite angles are equal. $\measuredangle M Q N=\measuredangle O Q P=71.6 ; \measuredangle M Q P=\measuredangle N Q O=108.4^{\circ}$

The diagonals bisect each other. $M Q=O Q=1.4$ units $; N Q=P Q=1.1$ units

Two pairs of congruent triangles are formed.
$\triangle M Q N=\triangle O Q P ; \triangle N Q O=\triangle M Q P$
Adjacent angles are supplementary.
Diagonals of a
Parallelogram

$$
\begin{array}{lll}
\measuredangle M Q P+\measuredangle O Q P & ; & \measuredangle N Q O+\measuredangle M Q N \\
=108.4^{\circ}+71.6^{\circ} & ; & =108.4^{\circ}+71.6^{\circ} \\
=180^{\circ} & ; & =180^{\circ}
\end{array}
$$

There is only one pair of parallel sides. AB // CD

There are different types of trapezoids! The most popular ones are listed here----

+ Right Trapezoid
+ has a right angle
+ Isosceles Trapezoid
+ has congruent legs
+ has two pairs of congruent angles

The opposite angles formed by the midsegments are equal.

$$
\measuredangle \mathrm{IJK}=\measuredangle \mathrm{Z} \mathrm{ILK}=86.8^{\circ} ; \Varangle \mathrm{JKL}=\measuredangle \mathrm{JIL}=93.2^{\circ}
$$

Opposite midsegments are parallel. IJ // KL ; IL // JK

Midsegments of
a Trapezoid Hence, the midsegments of a parallelogram form another parallelogram. Opposite angles and sides are congruent.

Opposite angles are equal. $\measuredangle M Q N=\triangle O Q P=93.2^{\circ} ; \measuredangle M Q P=\measuredangle N Q O=86.8^{\circ}$

The diagonals do NOT bisect each other. $M Q \neq O Q$; $P Q \neq N Q$

Adjacent angles are supplementary.
ŁMQP + $\triangle O Q P \quad ; \quad \measuredangle N Q O+\triangle M Q N$
$=86.8^{\circ}+93.2^{\circ} ; \quad=86.8^{\circ}+93.2^{\circ}$
$=180^{\circ} \quad ; \quad=180^{\circ}$

Diagonals of
 a Trapezoid

*Isosceles trapezoid: diagonals are equal in length. Only one pair of congruent triangles is created.

diagonals
of a Kite
The diagonals are sometimes equal in length. $N P=M O=3$ units

The angles formed by the diagonals are equal. $\triangle N Q O=\angle O Q P=\triangle M Q N=\triangle M Q P=90^{\circ}$

Only one diagonal is bisected by the other. $M Q=O Q$; $N Q \neq P Q$

The diagonals are perpendicular to each other. $M O \perp N P$

Two pairs of congruent triangles are formed. $\triangle O Q P=\triangle M Q P ; \triangle N Q M=\triangle N Q O$

After hours 'in the store'...

I finally found a triangular kite!

Original dimensions: 68.5 cm
Ratioed dimensions: 6.2 cm

The plastic rod is the midsegment connecting sides MN and MO. It is parallel to Side NO. We know that the midsegment of a triangle is half in length of its parallel. Hence, segment TU is half of NO.
$\mathrm{TU}=1 / 2 \mathrm{NO}$
$T U=1 / 2(6.2)$
$T U=3.1$
\therefore the plastic rod is 3.1 cm in the diagram. In reality it would be $(3.1 \times 11) 34.1 \mathrm{~cm}$.

Length of the plastic rod of this kite

Original dimensions: 68.5 cm
49.5 cm
$\div 11$
$\div 11$
Ratioed dimensions: 6.2 cm
4.5 cm

The pythagorean theorem can find the length of a missing side in a right triangle. The formula goes like this: $a^{2}+b^{2}=c^{2}$ where a and b are the base and height. In the dark shaded triangle, we are given the value of a and c. If we sub in...
$a^{2}+b^{2}=c^{2}$
$(3.1)^{2}+b^{2}=(4.5)^{2}$
$9.61+b^{2}=20.25$
$b^{2}=10.64$
$b \approx 3.3$
\therefore The median of the plastic rod is around 3.3 cm .

Jazak Alahu Khairun!

